If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2-5t=0
a = 15; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·15·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*15}=\frac{0}{30} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*15}=\frac{10}{30} =1/3 $
| 8x-3×=-25-5 | | 4x+29=9x+44 | | n+1=7n+12-11-6n | | 13x^2=24 | | 18b=2.8=10 | | 4^x(5^2x)=10 | | 3.9+8y=19.5 | | 2x+284=1356 | | 19.5=8y=3.9 | | 5^x-2+3=32 | | -15=x÷-5 | | 5x+x+28=180 | | -2x+8-2x=12 | | 1.5y=10 | | 2x+32=497 | | 2=5/9(f-32 | | z/8=2/5 | | 5(n-3)-(6-7n)=11n | | t/15=-3 | | -6(v+1)=8v+8 | | 62.5+t=-72 | | y=-4y | | 2x÷3=20 | | t÷15=-3 | | x=0.003 | | -41+10y+4=3(4y-4)-7 | | -2+1+x-3-(-x)=6-1+(-1) | | 2x2-4=-166 | | t+62.5=-72 | | y=16-5× | | 1/4+41/2k=1/8 | | 31x=6136 |